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We study theoretical and empirical aspects of the mean exit time of financial time series. The
theoretical modeling is done within the framework of continuous time random walk. We empirically
verify that the mean exit time follows a quadratic scaling law and it has associated a pre-factor
which is specific to the analyzed stock. We perform a series of statistical tests to determine which
kind of correlation are responsible for this specificity. The main contribution is associated with the
autocorrelation property of stock returns. We introduce and solve analytically both a two-state
and a three-state Markov chain models. The analytical results obtained with the two-state Markov
chain model allows us to obtain a data collapse of the 20 measured MET profiles in a single master
curve.
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I. INTRODUCTION

The Continuous Time Random Walk (CTRW) for-
malism introduced four decades ago by Montroll and
Weiss [1] has been successfully applied to a wide and
diverse variety of physical phenomena over the years [2]
but only recently to finance [3, 4, 5, 6, 7, 8, 9, 10, 11, 12].
In this latter context, the efforts have been mostly fo-
cused on the statistical properties of the waiting time
between successive transactions and the asset return at
each transaction. Different studies in different markets
are conceiving the idea that the empirical distributions
of both random variables are compatible with an asymp-
totic fat tail behavior [3, 4, 5, 6, 7, 8, 9, 10, 11].

Within the CTRW formalism some of us have recently
investigated the mean exit time (MET) of asset prices
out of a given interval of size L for financial time series
[12]. This study shows that the MET follows a quadratic
growth in terms of L for small interval lengths L. In
the same study, this functional form was observed for a
specific time series of the foreign exchange (FX) market,
which is the U.S. dollar/Deutsche mark futures time se-
ries [12].

In this paper we investigate both theoretically and em-
pirically the MET of price returns traded in a stock ex-
change. In our empirical investigation we study the MET
of high frequency return time series of 20 highly capital-
ized stocks traded in New York Stock Exchange. Em-
pirical results about this market confirm that the MET
follows a power law with a pre-factor that depends on

∗Corresponding author: miquel.montero@ub.edu

the specific stock chosen. This observation motivates us
to first verify and then release some of the assumptions
used in Ref. [12] therefore generalizing the model dis-
cussed in that paper. The theoretical generalization has
been performed by introducing and solving a new two-
state chain Markovian model able to both describe the
quadratic scaling property of the MET and provide the
data collapse of the MET stock pre-factor.

We show that a satisfactory data collapse of the MET
is obtained when some degree of autocorrelation in the
stock returns is introduced in the two-state chain Marko-
vian model. We attempt to further improve the accuracy
by extending the model to a three-state Markov chain for
which we are still able to evaluate the MET. Neverthe-
less, empirical data show that the three-state model does
not improve the quality of data collapse in the MET pro-
files of the different stocks although the theoretical curve
shows a better agreement with the empirical data than
that of the two-state Markov chain model.

The paper is organized as follows. In Sections II and
III, we discuss the MET behavior under the CTRW
formalism and a series of simplifying assumptions. In
Sect. IV we empirically investigate the scaling and data
collapse properties of highly capitalized stock data. Sec-
tion V relates the time correlation of stock return with
the absence of data collapse of MET observed in the pre-
vious section. In Sect. VI we introduce and solve a two-
state and a three-state Markov chain model to describe
the empirical MET observations. Conclusions are drawn
in Sect. VII.

mailto:miquel.montero@ub.edu
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II. MEAN EXIT TIME FOR I.I.D. PROCESSES

In the most common version of the CTRW for-
malism a given random process X(t) shows a se-
ries of random increments or jumps at random times
· · · , t−1, t0, t1, t2, · · · , tn, · · · remaining constant between
these jumps. Therefore, after a given time interval
τn = tn − tn−1, the process experiences a random in-
crement ∆Xn(τn) = X(tn) −X(tn−1) and the resulting
trajectory consists of a series of steps as shown in Fig. 1.

Both waiting times τn and random jumps ∆Xn(τn) are
assumed to be independent and identically distributed
(i.i.d.) random variables described by their probability
density functions (pdfs) which we denote by ψ(τ) and
h(x) respectively.

However, in the most general representation of the for-
malism, another function is needed to describe the time
evolution of X(t). We denote this function by ρ(x, τ)
which is the joint pdf of waiting times and jumps:

ρ(x, τ)dxdτ = Prob{x < ∆Xn ≤ x+ dx; τ < τn ≤ τ + dτ}. (1)

X(t )=x00

nX(t  )

n−1X(t    )

t    (x )a,b       0

t0 tnt32t1t−1t

−1X(t   )

tn−1t

nτ

b

X(t)

a

FIG. 1: A sample trajectory of the X(t) process along with
the corresponding value of the random variable ta,b(x0).

Note that the functions ψ(τ) and h(x) are the marginal
probability density functions of ρ(x, τ). We refer the
reader to Ref. [1, 2, 3, 4, 5, 6, 7, 8, 10, 11] for a more
complete account of the CTRW formalism.

In this paper we will apply the CTRW to study some
aspects of the exit problem of financial time series. We
will take as underlying random processX(t) the logarith-
mic priceX(tn) = ln(S(tn)), where S(t) is the stock price
at time t. We specifically consider the problem of ob-
taining the mean exit time of X(t) out of a given interval
[a, b]. We assume that at certain reference time t0, right
after an event, the price has a known value X(t0) = x0,
x0 ∈ [a, b]. We focus our attention on a particular real-
ization of the process and suppose that at certain time
tn > t0 the process first leaves the interval (see Fig. 1).
We call the interval tn − t0 the exit time out of the re-
gion [a, b] and denote it by ta,b(x0). This quantity is a
random variable since it depends on the particular trajec-
tory of X(t) chosen and the MET is simply the average
Ta,b(x0) = E[ta,b(x0)].

The standard approach to exit time problems is based

on the knowledge of the survival probability which is gen-
erally quite involved [13]. However, within the CTRW
formalism one can assume that the events compose a
series of independent and identically distributed two-
dimensional random variables. Under such an assump-
tion, some of us [12] have recently shown that one can
obtain the MET directly, without making use of the sur-
vival probability. In this framework the MET obeys the
following integral equation [12, 14]

T (x0) = E[τ ] +

∫ b

a

h(x− x0)T (x)dx, (2)

where

E[τ ] =

∫ ∞

0

ψ(τ ′)τ ′dτ ′

is the mean waiting time between jumps. It is worth
noticing that Eq. (2) is still valid even when τn and ∆Xn

are cross-correlated. In fact, in the case of an i.i.d. pro-
cess the MET only depends on the pdfs of waiting times
ψ(τ) and jumps h(x), but it does not depend on the
particular form of the joint pdf ρ(x, τ). However if we
would remove the i.i.d. hypothesis we should specify a
functional form for ρ(x, τ).

We now assume that returns increments are distributed
according to an even pdf, h(x) = h(−x), which also sat-
isfies the following scaling condition,

h(x) =
1

κ
H

(x

κ

)

(3)

where κ is the scale of the fluctuations given by the
standard deviation κ of jumps, where κ2 = E[∆X2

n −
E[∆Xn]2]. The parameter κ corresponds to the
transaction-to-transaction volatility. Under these as-
sumptions some of us showed that the MET out of a
small region of size L ≡ b− a≪ κ is [12]

T (a + L/2) = E[τ ]

[

1 + 2H(0)

(

L

2κ

)

+ (H ′(0+) + 4H(0)2)

(

L

2κ

)2

+ O

(

L3

κ3

)]

, (4)
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where it is assumed that the return process is initially in
the middle of the interval [a, b].

In Ref. [12] some of us have applied the above result
to the FX market of the U.S. dollar/Deutsche mark fu-
ture price. One important conclusion there was that the
quadratic growth of the MET is still a good approxi-
mation even for large intervals, i.e. L ≫ κ. It is less
clear nonetheless that the coefficients of the polynomial
which we have obtained in Eq. (4) are those that better
reproduce the global behavior of the MET. We refer the
reader to Ref. [12] for a more detailed discussion on this
particular aspect of the problem.

In this paper we analyze the scaling properties of the
MET for 20 highly capitalized stocks traded at the NYSE
in the four year period 1995-1998 and spanning 1, 011
trading days. Table I shows the list of stocks and the
relevant parameters. We have measured the MET for
each stock and compared them in the scaled variables
T (a+L/2)/E[τ ] and L/2κ. If all previous hypotheses of
the model were correct, and the function H(u) is of uni-
versal nature, one should observe the same curve for all
stocks, i.e. a data collapse, as well as a quadratic growth
in L at least for small L. However, Fig. 2 shows that
there is a considerable spread of the curves. although
the parabolic shape is recovered in all cases not only for
small intervals, as expected, but for the whole investi-
gated range of L/2κ .

TABLE I: Summary statistics of the 20 stocks we study for
the period 1995-1998. The second column gives the number
of transactions, the third one the standard deviation of jumps
and the fourth one the mean waiting time, i.e. the mean time
between two intraday consecutive transactions.

Ticker Transactions κ (×10−4) E[τ ] (seconds)

AHP 521,639 9.18 44.2

AIG 472,393 6.98 49.2

BMY 573,397 7.30 40.3

CHV 449,328 8.47 51.5

DD 645,164 8.80 36.0

GE 1,319,145 7.17 18.7

GTE 512,581 13.10 45.2

HWP 930,003 9.20 25.0

IBM 1,072,395 5.42 22.7

JNJ 728,686 8.75 32.1

KO 784,357 9.11 29.7

MO 971,700 10.11 23.9

MOB 461,669 6.82 50.0

MRK 971,842 7.34 23.8

PEP 767,929 15.48 30.3

PFE 1,003,518 7.46 23.1

PG 679,601 7.36 34.2

T 1,030,761 11.13 22.6

WMT 565,946 15.80 40.1

XON 674,412 7.08 34.5

FIG. 2: (Color online) Mean exit times as a function of the
region size L for the 20 investigated stocks. The x axis is
scaled by 2κ, whereas the y axis is scaled by the mean wait-
ing time E[τ ]. The inset shows the same curves in a double
logarithmic plot.

III. A DISCRETE STATE MODEL

Our first objective is to understand why the quadratic
term governs both the long and short range behavior of
the MET, without a drastic change of the general model
and its assumptions. In the present approach we develop
a model for h(x) based on the small-scale properties of
the system.

It is worth noticing that this approach is also used in
the context of option pricing, when the fair price of a
derivative product is obtained by making use of the bi-
nomial trees methodology, where it is assumed that the
stock price makes a jump up or down with some proba-
bility [15]. Here we introduce the following symmetrical
three-state discrete model:

h(x) = Q δ(x) +
1 −Q

2
[δ(x− c) + δ(x+ c)] . (5)

where Q represents the probability that the price remains
unchanged, and c is the basic jump size [16]. By substi-
tuting this expression of h(x) into Eq. (2) we obtain

T (x0) = E[τ ]+Q T (x0)+
1 −Q

2
[T (x0 + c) + T (x0 − c)] ,

with the convention that the term T (x0 + c) only counts
if x0 ≤ b − c, and similarly that T (x0 − c) only appears
when x0 ≥ a + c. Let us analyze these two boundary
conditions in greater detail. In general, the limits of our
interval can be expressed in the following form:

a = x0 − (l + εa)c,

b = x0 + (m+ εb)c,
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with l,m ∈ N and εa, εb ∈ [0, 1). However it is easy to
conclude that T (x0) can depend neither on εa nor on εb.
The only way of leaving the interval is by reaching the
points x = x0 − (l + 1)c or x = x0 + (m + 1)c, because
x = x0 − lc, and x = x0 + mc lay always inside the
interval. Therefore we will not loose generality by setting
εa = εb = 0. After that, the length of the interval in the
natural scale units of the problem is N ≡ L/c = l +m,
and the use of the following notation Tn ≡ T (a + nc),
with n ∈ {0, 1, · · · , N − 1, N}, arises in a natural way.

Summing up, for the discrete model given by Eq. (5)
the MET out of the interval [a, b] obeys the following set
of difference equations

Tn =
E[τ ]

1 −Q
+

1

2
(Tn+1 + Tn−1) (6)

(n = 0, 1, 2, · · · , N) with boundary conditions:

T−1 = TN+1 = 0. (7)

The solution to Eqs. (6)-(7) is given by

Tn = E[τ̃ ](n+ 1)(N + 1 − n), (8)

where the random variable τ̃ is related to τ in such a way
that

E[τ̃ ] =
E[τ ]

1 −Q
. (9)

By repeating the above derivation leading to Eq. (6),
one can show that the random variable τ̃ represents the
waiting time between jumps if one neglects zero-return
trades, i.e. if one identifies the occurrence of a jump when
X(t) actually changes its value. Thus, for instance, if
∆Xi−1 6= 0, ∆Xi = 0, and ∆Xi+1 6= 0 with correspond-
ing waiting times τi−1, τi, and τi+1, we can replace the
pair of events (∆Xi,∆Xi+1) with a single transaction of

size ∆X̃j = ∆Xi + ∆Xi+1 = ∆Xi+1, taking a waiting
time τ̃j = τi + τi+1.

From Eq. (8) we see that, for even values of N , the
MET starting from the middle of the interval reads

TN/2 = E[τ̃ ]

(

1 +
N

2

)2

. (10)

Looking at the general solution given by Eq. (8) and also
at Eq. (10) we clearly observe a quadratic behavior of
the MET as a function of N , that is to say, as a function
of the length of the interval. Indeed, from Eq. (10) we
have:

T (a+ L/2)

E[τ̃ ]
=

(

1 +
L

2κ̃

)2

. (11)

where N = L/c and κ̃2 = E[∆X̃2
n −E[∆X̃n]2] = c2. The

same kind of scaling also holds in terms of the parameters
of the three-state model. In fact, from Eq. (9) we get

T (a+ L/2)

E[τ ]
=

1

1 −Q

(

1 +
L
√

1 −Q

2κ

)2

. (12)

where κ2 = E[∆X2
n −E[∆Xn]2] = (1−Q) c2. Hence, for

large values of L/κ,

T (a+ L/2)

E[τ ]
∼

(

L

2κ

)2

. (13)

IV. CAUSES OF ABSENCE OF DATA

COLLAPSE

In the previous section we have shown that a sim-
ple discrete model for the jump distribution results in
a quadratic growth of the MET valid for arbitrary values
of the length of the interval and not only for small values
of L/κ, as was the case of Eq. (4).

Unfortunately the discrete model does not properly ac-
count for the spread of the MET curves observed in Fig. 2
when we consider different stocks. One could argue that
this spread can be controlled through the parameter Q
appearing in Eq. (12) since Q may distinguish one stock
from another. However, as Eq. (13) shows the MET is
practically independent of Q for large values of L and the
difference between stocks would disappear in this range
of lengths. Nevertheless, we clearly see in Fig. 2 that the
spread between stocks does not tend to vanish but, even
in some cases, it increases with L.

In this Section we try to identify the possible reasons of
the failure of the data collapse of our previous model. We
revisit some of our assumptions and derive consequences
with the aim of finding the most important feature that
we are leaving aside. The final goal is to improve our de-
scription in the simplest possible way. Let us first sum-
marize some potential causes for the lack of data collapse
in the previous models:

1. The probability density h(x) is different for differ-
ent stocks. This would imply different mean exit
time curves.

2. There is some dependency on the cross-correlation
between waiting times and price returns.

3. The time auto-correlation of waiting times should
be included in the model.

4. The time auto-correlation of returns should be in-
cluded in the model.

We analyze the impact of these hypotheses on the
empirical outcomes by performing shuffling experiments.
Thus, in order to test the first hypothesis we shuffle inde-
pendently the time series of ∆Xn and τn and we perform
the mean exit time analysis on the shuffled time series.
This shuffling destroys all the time- and cross- correla-
tions but it preserves the shape of the pdfs h(x) and
ψ(τ) and therefore the values of the scaling parameter κ
and the average waiting time E[τ ]. Figure 3 shows a very
good collapse indicating that the assumption of a master
pdf for the returns of all the stocks is good working hy-
pothesis and it is not the reason for the lack of collapse
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of Fig. 2. Moreover the MET curves are well fitted by
the functional form y = (1 + x)2.

FIG. 3: (Color online) Mean exit times as a function of the
region size L for the 20 investigated time series after shuffling
both waiting times and return increments. The x axis is scaled
by 2κ, whereas the y axis is scaled by the mean waiting time
E[τ ]. The inset shows the same curves in a double logarithmic
plot. The dashed curve represents the functional form y =
(1 + x)2.

The other three hypotheses can be similarly tested by
performing three different shuffling experiments. Specifi-
cally, hypothesis 2) can be tested by shuffling simultane-
ously the two series and preserving the cross-correlation
between ∆Xn and τn. Notice that even if Ref. [12] has
shown that in the absence of autocorrelation of waiting
times and returns (i.i.d. model) the MET is indepen-
dent of the cross-correlations ρ(x, τ), in the general case
ρ(x, τ) may play a role. Hypothesis 3) can be tested by
shuffling only the series of waiting times and preserving
the order in the series of returns. Finally, hypothesis 4)
can be tested by shuffling only the time series of returns
and preserving the order of the series of waiting times.
Figure 4 shows the results of these shuffling experiments
for the General Electric (GE) stock. The Figure shows
that neglecting the autocorrelation function of waiting
times does not change the MET curve. On the other
hand, when one destroys the auto correlation of returns
the MET (star) changes dramatically and becomes close
to the one predicted by the i.i.d. model.

By summarizing, in order to have a good model of
the mean exit time one cannot neglect the correlation
properties of price return, whereas the other correlations
can be neglected as a first approximation.

V. THE CORRELATION OF RETURN

INCREMENTS

What is the origin of correlation of returns? There
are, in principle, two possible answers. One contribution

FIG. 4: (Color online) Mean exit times as a function of the
region size L for General Electric obtained by performing four
different shuffling experiments. The dashed (black) curve is
the MET of the original data. The solid (red) line is the
MET for data shuffled both in the waiting times and in the
return increments. The squares (green) give the MET when
one shuffles both ∆Xn and τn but preserving the association
(cross correlation) between the two and circles (blue) give
the MET when one shuffles only the waiting times. The star
(magenta) give the MET when one shuffles only the returns.

comes from the linear autocorrelation of the increments
of returns given by E[∆Xn∆Xm]. A second contribution
is related to nonlinear properties which can be exempli-
fied by the nonlinear correlation E[|∆Xn||∆Xm|].

The first contribution can be easily evaluated by tak-
ing the linear autocorrelation function of the increments
of price returns. Figure 5 shows this quantity for GE
(solid line). In the Figure it is clear that for a lag of one
trade the linear autocorrelation function is negative and
significantly different from zero. This is a known effect
of transaction prices which is due to the presence of a
spread between the best bid and the best ask (the “bid-
ask bounce”, see for example [17]). It is reasonable to
assume that this short range correlation can be included
in the model by using a Markov process.

The nonlinear correlation is related to the volatility
and can be quantified by plotting the autocorrelation
function of |∆Xn|. The result (dashed line) in Fig. 5 is a
slowly decaying function indicating a long range correla-
tion, which is probably not compatible with a Markovian
model.

We can test the relative importance of the two contri-
butions to the correlation of returns by performing an-
other shuffling experiment. We can obtain a surrogate
time series with the same linear autocorrelation function
but with an uncorrelated volatility (absolute value of re-
turn increments). The method (see for example Chapter
7 of Ref. [18]) consists in taking the Fourier transform of
the original time series and then randomize its phases.
Because of the Wiener-Kinchine theorem the linear au-



6

FIG. 5: (Color online) The solid (blue) line shows the auto-
correlation function of the time series of returns for the stock
GE. The dashed (red) line shows the autocorrelation of the
absolute value of returns for the same stock.

tocorrelation of the surrogate time series is the same as
the original, but the nonlinear correlation will be zero.
Therefore, we have a time series with the same bid-ask
bounce properties but with an uncorrelated volatility.
One difficulty of the method is the fact that the pdf of
the surrogate series will be in general different from the
original one (unless the time series is Gaussian). Since
we know that, in general, the MET depends on the re-
turn pdf, we should control that the distortion of the pdf
introduced by the phase randomization is not critical in
changing the properties of the MET. To this end we first
compare the MET curve of the shuffled original time se-
ries to the shuffled phase-randomized time series. These
two series are both i.i.d. but with different pdfs. Figure 6
shows that the two METs (dashed line and squares) are
very close, thus indicating that the distortion of the pdf
introduced by the phase randomization is not critical for
the MET properties.

We can now compare the METs of the original data to
the ones for the phase-randomized time series. The two
series have the same linear autocorrelation function, but
the first one displays a clustered volatility whereas the

randomized series does not. The two METs (see solid line
and circles in Fig. 6) are again very close, thus showing
that the most important time correlation contribution to
the MET is the linear autocorrelation (bid-ask bounce),
while the clustered volatility plays a minor role.

VI. MEAN EXIT TIME FOR A

MARKOV-CHAIN MODEL

In order to incorporate the linear correlations of re-
turns, we derive an integral equation for the mean exit
time out of a given interval when the driving process is a

FIG. 6: (Color online) Mean exit times obtained by per-
forming shuffling experiments for the stock GE. The dashed
(green) line refers to the real data shuffled both in time and
in returns (the curve is also shown in Fig. 3). The squares
(blue) refer to the shuffled phase-randomized time series. The
solid (black) curve refers to the original data (the curve is
also shown in Fig. 2) and the circles (red) refer to the phase-
randomized time series.

continuous time random walk with memory. In particu-
lar, we will consider Markov processes within the CTRW
framework. Such models lead to the following joint con-
ditional probability density function:

ρ(x, τ |x′, τ ′)dxdτ = Prob{x < ∆Xn ≤ x+ dx; τ < τn ≤ τ + dτ |∆Xn−1 = x′; τn−1 = τ ′}. (14)

In this Markovian case the conditional MET,
T (x0|∆X0, τ0), will also depend on both the mag-
nitude of the previous jump ∆X0 = x0 − x−1 and its
sojourn time τ0 = t0 − t−1 (see Fig. 1). Now, and

contrary to Eq. (2), the integral equation for the condi-
tional MET depends on the complete joint probability
density function. It reads:
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T (x0|∆X0, τ0) = E [τ |∆X0, τ0] +

∫ ∞

0

dτ

∫ b

a

ρ(x− x0, τ |∆X0, τ0)T (x|∆X, τ)dx, (15)

where ∆X = x − x0 and τ = t − t0. The level of com-
plexity of Eq. (15) can be considerably reduced by noting
that, as we have shown in Sect. V, it is possible to remove
the correlation between consecutive waiting times with-
out affecting the MET. Therefore, we will assume that

the correlation involving waiting times is negligible, and
that all relevant information we have to consider when
dealing with the n-th event is the magnitude of the pre-
vious change. In such a case instead of Eq. (14) we write

ρ(x, τ |x′)dxdτ = Prob{x < ∆Xn ≤ x+ dx; τ < τn ≤ τ + dτ |∆Xn−1 = x′}. (16)

Hence, the integral equation for the MET is simpler, be-
cause on the right hand side of Eq. (15) we can perform
the integral over time. We thus obtain

T (x0|∆X0) = E [τ |∆X0]

+

∫ b

a

h(x− x0|∆X0)T (x|∆X)dx. (17)

In this case the MET only depends on the marginal
probability density function of the return increments,
h(x|∆X0),

h(x|∆X0) =

∫ ∞

0

ρ(x, τ |∆X0)dτ,

and on the conditional expectation of waiting times
E [τ |∆X0] which has to be evaluated through the
marginal pdf, ψ(τ |∆X0),

ψ(τ |∆X0) =

∫ ∞

−∞

ρ(x, τ |∆X0)dx.

We finally observe that although x0 ∈ [a, b], we let ∆X0

to be any real number.

A. A two-state Markov chain model

In order to solve Eq. (17) and obtain explicit expres-
sions for the MET that can be compared with empirical
data, we follow the same approach of Sect. III and choose
a discrete model for h(x|∆X0). At this point we can opt
for a two-state model in which, at any time step, returns
can only go up and down a fixed quantity c, or for a three-
state model where in addition the return increment can
be zero. We have shown in Sect. III that for an i.i.d.
process both alternatives are equivalent. In the case of a
Markovian process the equivalence is not complete. As
we will see below, the final expressions obtained for the

unconditional MET are slightly different although, for
large values of L, the leading term is the same in both
cases.

Let us start with a two-state Markov chain model. In
the symmetrical case in which up and down movements
are equally likely, the conditional pdf for return incre-
ments is

h(x|y) =
c+ ry

2c
δ(x− c) +

c− ry

2c
δ(x+ c), (18)

where r is the correlation between the magnitude of two
consecutive jumps:

r ≡ Cov[∆X̃n,∆X̃n−1]
√

Var[∆X̃n]Var[∆X̃n−1]
. (19)

From Eq. (18) we see that the squared volatility,

κ̃2(y) ≡
∫ ∞

−∞

x2h(x|y)dx = c2,

is independent of y. By substituting Eq. (18) into
Eq. (17) we get the following difference equation for the
MET:

T (x0|∆X̃0) = E[τ̃ |∆X̃0] +
c+ r∆X̃0

2c
T (x0 + c|c)

+
c− r∆X̃0

2c
T (x0 − c| − c), (20)

where ∆X̃0 = ±c, T (x0 + c|c) = 0 if x0 > b − c and
T (x0 − c| − c) = 0 if x0 < a+ c. We extend the notation
introduced in Sect. III and define

Tn,n∓1 ≡ T (x0 = a+ nc|∆X̃0 = ±c). (21)

Now, Eq. (20) is equivalent to the following set of recur-
rence equations:

Tn,n−1 = E[τ̃ ] +
1 + r

2
Tn+1,n +

1 − r

2
Tn−1,n, (22)

Tn,n+1 = E[τ̃ ] +
1 − r

2
Tn+1,n +

1 + r

2
Tn−1,n, (23)
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(n = 0, 1, · · · , N) with boundary conditions:

T−1,0 = TN+1,N = 0. (24)

Note that in writing Eqs. (22)-(23) we have set E[τ̃ |±c] =
E[τ̃ ] which is consistent with the assumed symmetry be-
tween up and down movements (see also Eq. (25) below).
The solution to problem (22)-(24) reads

Tn,n−1 = E[τ̃ ](N + 1 − n)

[

1 + n
1 − r

1 + r

]

,

Tn,n+1 = E[τ̃ ](n+ 1)

[

1 + (N − n)
1 − r

1 + r

]

.

The quantity of interest for our analysis is the uncon-
ditional MET Tn, which is related to Tn,n±1 by

Tn =
1

2
(Tn,n−1 + Tn,n+1) , (25)

that is,

Tn = E[τ̃ ]

[

1 +
N

1 + r
+

1 − r

1 + r
n(N − n)

]

. (26)

Thus the MET starting from the middle of the interval
reads

TN/2 = E[τ̃ ]

[

2r

1 + r

(

1 +
N

2

)

+
1 − r

1 + r

(

1 +
N

2

)2
]

.

(27)
In this case, and contrary to the i.i.d. case given in Eq.
(10), the MET TN/2 is not a perfect quadratic expression.
However, taking into account that N = L/c and κ̃ = c
we have

T (a+ L/2)

E[τ̃ ]
=

2r

1 + r

(

1 +
L

2κ̃

)

+
1 − r

1 + r

(

1 +
L

2κ̃

)2

,

(28)
and for large values of L/κ̃ we recover the expected
quadratic behavior in the leading term:

T (a+ L/2)

E[τ̃ ]
∼ 1 − r

1 + r

(

1 +
L

2κ̃

)2

. (29)

Note that the value of r depends on each particular stock.
Therefore, the scaled MET defined as:

Tsc(L) ≡
(

1 + r

1 − r

)

T (a+ L/2)

E[τ̃ ]
, (30)

tends, for increasing values of L, to a quadratic function
of the interval length which is independent of the partic-
ular stock chosen.

In Fig. 7 we compare the MET curves for the data
scaled in the original way (inset), as given in Eq. (11),
and for the data scaled according to Eq. (30). The inset
of Figure 7 is essentially the same as Fig. 2. Figure 7
shows that the scaling of Eq. (29) gives a significant im-
provement with respect to the original one. We note
that the scaled curves are systematically below the curve
y = (1 + x)2, probably because some correlation is not
taken correctly into account by the two-state model. We
will now attempt to correct this bias by introducing a
three-state model.
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FIG. 7: (Color online) Comparison of the MET curves for the
original i.i.d. model and the two-state Markov chain model.
In this figure we have scaled the MET according to Eq. (29)
of the two-state Markovian model. The dashed (black) line is
the parabolic curve y = (1+x)2. The inset is the same shown
in Fig. 2 for the i.i.d. process.

B. A three-state Markov chain model

One can argue that the two-state model just devel-
oped would need an improvement in order to include
zero-return transactions, i.e. those with ∆Xn = 0. In
Sect. III we have shown that for the i.i.d. process the in-
clusion of a third possible state is completely equivalent
to a two-state (up and down) model after redefining the
mean waiting time and the volatility κ by including the
probabilityQ of zero-return transactions. However, when
memory is present, as is now the case, this equivalence
is not complete. We thus outline a discrete three-state
Markov chain model.

The Markov-chain model is now characterized by the
following transition matrix:

T =







P (−|−) P (−|0) P (−|+)

P (0|−) P (0|0) P (0|+)

P (+|−) P (+|0) P (+|+)






, (31)

where P (−|−) ≡ Prob{∆Xn = −c|∆Xn−1 = −c} and
similar definitions for the rest of the matrix elements.
Since we are also assuming that the process is symmetri-
cal for positive and negative returns, the transition ma-
trix T can be written in the following form:

T =







1+r
2
p 1−q

2

1−r
2
p

1 − p q 1 − p
1−r
2
p 1−q

2

1+r
2
p






, (32)

where q = P (0|0) is the probability for trapping,

p = P (−|−) + P (+|−) = P (+|+) + P (−|+)
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and r measures the strength of the persistence:

r =
P (−|−) − P (+|−)

P (−|−) + P (+|−)
=
P (+|+) − P (−|+)

P (+|+) + P (−|+)
.

Note that the first order autocorrelation coefficient, de-
fined as on the right-hand side of Eq. (19) is now given
by (cf. Eq. (19))

Cov[∆Xn,∆Xn−1]
√

Var[∆Xn]Var[∆Xn−1]
= pr. (33)

We also need to specify the unconditional probabilities
of each state:

P =







P (−)

P (0)

P (+)






≡







1−Q
2

Q
1−Q

2






. (34)

However, in this case Q is not an independent parameter
as was the case of the i.i.d. model (cf Sect. III). In-
deed, using the total probability formula and taking into
account the values of the transition matrix T and the
vector P, we get

p = 1 − 1 − q

1 −Q
Q.

Observe that when q = Q we have p = 1 − Q and there
is no trapping in the value of the random process.

Now the pdf of the returns reads

h(x|y) = a(y)δ(x) (35)

+
(1 − a(y))

2c
[(c+ ry) δ(x− c) + (c− ry) δ(x+ c)] ,

where

a(y) =

{

q, if y = 0,

1 − p, if y 6= 0.

In this case the integral equation (17) is equivalent to the
following set of difference equations for Tn,n and Tn,n±1:

Tn,n−1 = E[τ |c] + (1 − p)Tn,n

+ p

[

1 + r

2
Tn+1,n +

1 − r

2
Tn−1,n

]

(36)

Tn,n = E[τ |0] + qTn,n

+
1 − q

2
[Tn+1,n + Tn−1,n] (37)

Tn,n+1 = E[τ |c] + (1 − p)Tn,n

+ p

[

1 − r

2
Tn+1,n +

1 + r

2
Tn−1,n

]

(38)

where Tn,n±1 are defined as in Eq. (21) and

Tn,n = T (x0 = a+ nc|∆X0 = 0).

In writing Eqs. (36) and (38) we have taken into account
the symmetry

E[τ | + c] = E[τ | − c] ≡ E[τ |c].

Finally the solution to Eqs. (36)-(38) with boundary
conditions

T−1,0 = TN+1,N = 0

(cf Eq. (24)) reads

Tn,n−1 =
E[τ ]

1 −Q
(N + 1 − n)

[

1 + n
1 − pr

1 + pr

]

(39)

Tn,n =
E[τ |0]

1 − q
+

E[τ ]

2(1 −Q)

[

1 − pr

1 + pr

[

(N − n)(n+ 1)

+ n(N − n+ 1)
]

+N

]

(40)

Tn,n+1 =
E[τ ]

1 −Q
(n+ 1)

[

1 + (N − n)
1 − pr

1 + pr

]

, (41)

where E[τ ] is the (unconditional) mean waiting time
which is related to E[τ |c] and E[τ |0] by

E[τ ] = QE[τ |0] + (1 −Q)E[τ |c].

In terms of Tn,n±1 and Tn,n the unconditional MET Tn

is given by

Tn = QTn,n +

(

1 −Q

2

)

(Tn,n−1 + Tn,n+1),

and starting from the center of the interval we explicitly
have

TN/2 =
E[τ ]

1 −Q

[

2pr

1 + pr

(

1 +
N

2

)

+
1 − pr

1 + pr

(

1 +
N

2

)2
]

+ Q

[

E[τ |0]

1 − q
− E[τ ]

1 −Q

]

. (42)

The main difference between this expression and Eq. (27)
is the final constant term that accounts for the two kind
of trapping that the system may experience: the proba-
bilistic one, q 6= Q, and the temporal one, E[τ |0] 6= E[τ ].
By using the fact that κ2 = (1 −Q) c2, the leading term
is again of the form:

T (a+ L/2)

E[τ ]
∼ 1 − pr

1 + pr

(

L

2κ

)2

. (43)

In Fig. 8 we show the MET curves for the data scaled ac-
cording to Eq. (43). It is worth noting that the quantity
p r appearing in Eq. (43) can be estimated in two differ-
ent ways. One could separately compute p, the proba-
bility of a change in the price return provided a previous
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change, and r which is the strength of the persistence.
Alternatively one can estimate directly the quantity p r
by using Eq. (33). This second approach has the advan-
tage of reducing the dependence of the estimates from
the specific details of the model. This is the reason why
in the curves shown in Fig. 8 the quantity p r has been
estimated by using Eq. (33). The scaling shown in Fig-
ure 8 is not satisfactory, we would even say that it is less
satisfactory than the scaling corresponding to the two-
state model which has been shown in Fig. 7. However, it
is worth noting that the rescaled curves are not system-
atically below the parabolic curve (1 + x)2 as it was in
the case of the two-state model.

FIG. 8: (Color online) MET curves scaled according to Eq.
(43) of the three-state Markovian model. The quantity p r
has been estimated by using Eq. (33). The dashed (black)
line represents the curve y = (1 + x)2.

VII. CONCLUSIONS

This paper presents theoretical and empirical results
about the MET of financial time series. Specifically the
scaling property of the MET as a function of the size L
has been confirmed to follow a quadratic law for a number
of stock price time series. We empirically verify that the
quadratic scaling law has associated a pre-factor which
is specific to the analyzed stock. We have performed a
series of tests to determine which kind of correlation are
responsible for this dependence. It turned out that the
main contribution is associated with the linear autocor-
relation property of stock returns.

We have therefore introduced and solved analytically

both a two-state and a three-state Markov chain mod-
els. The analytical results obtained through the two-state
model allow us to get a quite satisfactory data collapse
of the 20 MET profiles into a single parabolic curve as
predicted by the model. However, this parabolic curve
appears to be systematically above real data, that is, the
model overstimates the mean exit time.

We have been able to solve a three-state Markov chain
model as well. Unfortunately this more detailed model
does not provide an improvement on data collapse. The
main advantage of this generalization is that the MET
provided by the model lies close to the empirical curves.
In other words, the three-state model does not overesti-
mate the METs.

We do not have a convincing explanation for this ob-
servation but only some indications. Specifically, we have
seen that the symmetries assumed in the three state
model are not present in some empirical transition matri-
ces [19]. Perhaps this assumption prevents the data from
a convincing data collapse and the system would perform
a better collapse in a model taking into account a certain
degree of asymmetry in the Markovian transition matrix.
However, obtaining the analytical solution for this more
general case seems to be very involved and it has been
left for future research.

In conclusion, the MET and the search of a data col-
lapse in the MET curves of stock prices provide a good
occasion for testing the underlying hypothesis character-
izing the return dynamics and for the improvement of
the CTRW models describing this phenomenon. We be-
lieve we have detected the essential ingredients to be ac-
counted for a feasible model within the CTRW. We hope
that the results may provide a certain insight on the way
to bridge the gap between the description of the stochas-
tic dynamics at very short time horizons with that of
longer time scales [17, 20, 21, 22, 23, 24, 25].
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